Добро пожаловать на форумы Боевого Народа (бывший форум Live.CNews.ru)!

ВАЖНЫЕ ТЕМЫ: FAQ по переезду и восстановлению учеток | Ошибки и глюки форума.
О проблемах с учетными записями писать СЮДА.
Вопрос к математикам - Форумы Боевого Народа
IPB

Здравствуйте, гость ( Вход | Регистрация )

> О разделе

Данный раздел форума предназначен для всевозможных дискуссий и обсуждений тем, касающихся науки и околонаучных вопросов. Ваши мысли, идеи, гипотезы и просто мнения - приветствуются, при условии соблюдения Правил раздела. И не забывайте регистрироваться.

2 страниц V   1 2 >  
Ответить в данную темуНачать новую тему
Вопрос к математикам, (векторный анализ - классическая теория поля)
Зиновий
сообщение 29.4.2019, 16:40
Сообщение #1


Прапорщик
*******

Группа: Старожилы
Сообщений: 6999
Регистрация: 7.10.2017
Из: г. Москва
Пользователь №: 53225



Для описания физических процессов происходящих в переменном во времени электрическом поле плоского воздушного конденсатора, исходя из соображения симметрии уравнений, Максвелл ввёл понятие "токи электрического смещения" определив их в след. виде:
jсм = ε0∂(-gradφ)/∂t.
Где:
jсм - вектор плотности тока смещения между пластинами плоского воздушного конденсатора;
ε0 - диэлектрическая проницаемость вакуума;
-gradφ - вектор напряжённости электрического поля между пластинами плоского воздушного конденсатора.
В результате чего первое уравнение теории электромагнетизма Максвелла для плоского воздушного электрического конденсатора приобрело след. вид:
rotB0ε0∂(-gradφ)/∂t,
или что тоже самое:
rotB =1/с2∂(-gradφ)/∂t. (1)
Где:
B - вектор магнитной индукции;
с - скорость света в вакууме.
В силу коммутативности частных производных по пространству и по времени перепишем уравнение (1) след. образом:
rotB =1/с2grad(-∂φ/∂t) (2)
Поскольку входящая в уравнение (2) скорость света является константой внесём 1/с2 как множитель
к частной производной по времени от электрического потенциала φ и в результате получаем след. окончательное выражение:
rotB = grad{1/с2(-∂φ/∂t)}. (3)
Докажем небольшую теорему.
Если ротор некоего векторного поля F по всему пространству поля включая его границы равен градиенту некоего поля ∂Ψ/∂t (т.е. равенство тождественное), то векторное поле F и поле градиента ∂Ψ/∂t оба равны нулю тождественно.

Доказательство
Дано:
rotF ≡ grad(∂Ψ/∂t); (4)
Подействуем оператором "rot" на выражение (4).
Получаем:
rotrotF ≡ rotgrad(∂Ψ/∂t).
Но ротор градиента есть тождественный ноль и след. ротор ротора вектора F тоже тождественный ноль, что означает тождественное отсутствие в пространстве векторного поля F возбудителей поля F и следовательно поле F тождественно равно нулю.
Аналогично подействуем оператором "div" на выражение (4).
Получаем:
divrotF ≡ divgrad(∂Ψ/∂t).
Но дивергенция ротора есть тождественный ноль, а след. и дивергенция градиента частной производной по времени есть тоже тождественный ноль.
Т.е. во всём пространстве поля градиент ∂Ψ/∂t нет источников поля градиента ∂Ψ/∂t и следовательно поле градиент ∂Ψ/∂t тождественно равно нулю.
Резюме
Из выражения (4), а следовательно и из выражения (3) вытекает тождественное равенство нулю магнитного поля якобы возбуждаемого, по утверждению Максвелла, токами смещения в переменном по времени электрическом поле плоского воздушного конденсатора.
Какие возражения будут у математиков?

Сообщение отредактировал Зиновий - 30.4.2019, 20:36


--------------------
Тот кто не знает и/или не понимает определений физических понятий - не знает физики.
То кто не знает физики - не знает и не понимает жизнь.
Природу изучать не формулы тачать.
Перейти в начало страницы
Вставить ник
+Цитировать сообщение
Зиновий
сообщение 2.5.2019, 15:56
Сообщение #2


Прапорщик
*******

Группа: Старожилы
Сообщений: 6999
Регистрация: 7.10.2017
Из: г. Москва
Пользователь №: 53225



Цитата(Зиновий @ 29.4.2019, 16:40) *
................................................................................
......................... (2)
Поскольку входящая в уравнение (2) скорость света является константой внесём 1/с2 как множитель
к частной производной по времени от электрического потенциала φ и в результате получаем след. окончательное выражение:
rotB = grad{1/с2(-∂φ/∂t)}. (3)
Докажем небольшую теорему.
Если ротор некоего векторного поля F по всему пространству поля включая его границы равен градиенту некоего поля ∂Ψ/∂t (т.е. равенство тождественное), то векторное поле F и поле градиента ∂Ψ/∂t оба равны нулю тождественно.

Доказательство
Дано:
rotF ≡ grad(∂Ψ/∂t); (4)
Подействуем оператором "rot" на выражение (4).
Получаем:
rotrotF ≡ rotgrad(∂Ψ/∂t).
Но ротор градиента есть тождественный ноль и след. ротор ротора вектора F тоже тождественный ноль, что означает тождественное отсутствие в пространстве векторного поля F возбудителей поля F и следовательно поле F тождественно равно нулю.
Аналогично подействуем оператором "div" на выражение (4).
Получаем:
divrotF ≡ divgrad(∂Ψ/∂t).
Но дивергенция ротора есть тождественный ноль, а след. и дивергенция градиента частной производной по времени есть тоже тождественный ноль.
Т.е. во всём пространстве поля градиент ∂Ψ/∂t нет источников поля градиента ∂Ψ/∂t и следовательно поле градиент ∂Ψ/∂t тождественно равно нулю.
Резюме
Из выражения (4), а следовательно и из выражения (3) вытекает тождественное равенство нулю магнитного поля якобы возбуждаемого, по утверждению Максвелла, токами смещения в переменном по времени электрическом поле плоского воздушного конденсатора.
Какие возражения будут у математиков?
Удивляет молчание математиков...
Им что неведомо что:
ротор градиента тождественно равен нулю, или что дивергенция ротора тождественно равна нулю?
Им неведомы теоремы о роторе, градиенте и дивергенции?
Ну тогда ознакомьтесь с этими важнейшими теоремами классического векторного анализа, например, по книге Лаптев Г.Ф. "Элементы векторного исчисления", или "Справочник по математике" Г.Корн и Т.Корн.
Складывается впечатление, что участвующие в форуме якобы "математики" на самом деле таковыми не являются и за достоверность своих сообщений не несут никакой ответственности...


--------------------
Тот кто не знает и/или не понимает определений физических понятий - не знает физики.
То кто не знает физики - не знает и не понимает жизнь.
Природу изучать не формулы тачать.
Перейти в начало страницы
Вставить ник
+Цитировать сообщение
Paraligon
сообщение 3.5.2019, 8:26
Сообщение #3


Прапорщик
*******

Группа: Старожилы
Сообщений: 7901
Регистрация: 14.8.2017
Пользователь №: 129274



Конечно, из того, что rotrotF = 0 НЕ следует, что F=0.
Чтобы убедиться в этом достаточно взять любое безвихревое ненулевое поле F. Такие ненулевые поля, несомненно существуют, для которых rotF=0, а значит и rotrotF = 0.

Аналогично, из того, что divgradV = 0 НЕ следует, что V=0.
Чтобы убедиться в этом достаточно взять любую гармоническую ненулевую функцию V. Такие ненулевые гармонические функции несомненно существуют, для которых divgradV = ΔV = 0. Δ - Оператор Лапласа.
Перейти в начало страницы
Вставить ник
+Цитировать сообщение
Зиновий
сообщение 3.5.2019, 13:53
Сообщение #4


Прапорщик
*******

Группа: Старожилы
Сообщений: 6999
Регистрация: 7.10.2017
Из: г. Москва
Пользователь №: 53225



Цитата(Paraligon @ 3.5.2019, 8:26) *
Конечно, из того, что rotrotF = 0 НЕ следует, что F=0.
Чтобы убедиться в этом достаточно взять любое безвихревое ненулевое поле F. Такие ненулевые поля, несомненно существуют, для которых rotF=0, а значит и rotrotF = 0.

Аналогично, из того, что divgradV = 0 НЕ следует, что V=0.
Чтобы убедиться в этом достаточно взять любую гармоническую ненулевую функцию V. Такие ненулевые гармонические функции несомненно существуют, для которых divgradV = ΔV = 0. Δ - Оператор Лапласа.
Уважаемый Paraligon, благодарю за ответ строго соответствующий общепринятому, но ошибочному мнению, получившему, к сожалению, весьма широкое распространение.
Достаточно вспомнить основную задачу классической теории поля и её формальную запись в виде интегралов определяющих скалярный φ и векторный А потенциалы, чтобы понять, что решением поля Лапласа по всему пространству поля будет тождественный ноль и производные от тождественного нуля есть тоже ноль тождественно.
Т.е. все математические преобразования при решении полевых задач в рамках основной задачи классической теории поля имеют тождественный характер и полученные решения однозначны.
Приложения
Цитата
Основная задача классической теории поля
Прямая задача

Определение физического поля распределённого в пространстве по заданному распределению источников (возбудителей) поля размещённых в этом пространстве включая его границы.
Обатная задача
Определение размещения источников (возбудителей) физического поля в пространстве по заданному распределения поля в этом пространстве.
Какие будут возражения?


--------------------
Тот кто не знает и/или не понимает определений физических понятий - не знает физики.
То кто не знает физики - не знает и не понимает жизнь.
Природу изучать не формулы тачать.
Перейти в начало страницы
Вставить ник
+Цитировать сообщение
Paraligon
сообщение 3.5.2019, 18:23
Сообщение #5


Прапорщик
*******

Группа: Старожилы
Сообщений: 7901
Регистрация: 14.8.2017
Пользователь №: 129274



Цитата(Зиновий @ 3.5.2019, 15:53) *
Уважаемый Paraligon, благодарю за ответ строго соответствующий общепринятому, но ошибочному мнению, получившему, к сожалению, весьма широкое распространение.
Достаточно вспомнить основную задачу классической теории поля и её формальную запись в виде интегралов определяющих скалярный φ и векторный А потенциалы, чтобы понять, что решением поля Лапласа по всему пространству поля будет тождественный ноль и производные от тождественного нуля есть тоже ноль тождественно.
Т.е. все математические преобразования при решении полевых задач в рамках основной задачи классической теории поля имеют тождественный характер и полученные решения однозначны.
Приложения
Какие будут возражения?


Всё очень просто, в том числе в части вашей фразы: " ... в этом пространстве включая его границы".
Задача рассматривается (по-видимому, и для конденсатора) в области, которая не совпадает со всем пространством и эта область имеет границу, на которой и лежат источники поля. Это с одной стороны.
С другой стороны, если вас интересуют физический осмысленные поля, то надо наложить определённые требования на эти поля, например, их поведение на бесконечности (когда аргумент стремиться к бесконечно удалённой точке). Это относится и к поведению поля пр стремлении аргумента к границе области. Такие ограничения, с необходимостью присутствуют и в уравнения Максвелла и любых других уравнениях математической физики. Т.е. я хочу сказать, что содержательным является е только формальное (формульное) уравнение, но и все все условия (граничные, краевые, степень гладкости, поведение на бесконечности и т.п.) с необходимостью являются неотъелемой частью уравнения! Так что поведение градиентов гармонических функций существенно зависит от количества "дырок" (когомологий) в рассматриваемой области пространства!

Перейти в начало страницы
Вставить ник
+Цитировать сообщение
Зиновий
сообщение 3.5.2019, 20:26
Сообщение #6


Прапорщик
*******

Группа: Старожилы
Сообщений: 6999
Регистрация: 7.10.2017
Из: г. Москва
Пользователь №: 53225



Цитата(Paraligon @ 3.5.2019, 18:23) *
Всё очень просто, в том числе в части вашей фразы: " ... в этом пространстве включая его границы".
Задача рассматривается (по-видимому, и для конденсатора) в области, которая не совпадает со всем пространством и эта область имеет границу, на которой и лежат источники поля. Это с одной стороны.
С другой стороны, если вас интересуют физический осмысленные поля, то надо наложить определённые требования на эти поля, например, их поведение на бесконечности (когда аргумент стремиться к бесконечно удалённой точке). Это относится и к поведению поля пр стремлении аргумента к границе области. Такие ограничения, с необходимостью присутствуют и в уравнения Максвелла и любых других уравнениях математической физики. Т.е. я хочу сказать, что содержательным является е только формальное (формульное) уравнение, но и все все условия (граничные, краевые, степень гладкости, поведение на бесконечности и т.п.) с необходимостью являются неотъелемой частью уравнения! Так что поведение градиентов гармонических функций существенно зависит от количества "дырок" (когомологий) в рассматриваемой области пространства!
Всё о чём Вы пишите учтено и оговорено в теореме единственности векторного анализа - "Теорема Гельмгольца":
http://doctorovich.info/forum/viewtopic.ph...9a77a73b36c6354
Определение понятия "Физическое поле" я ранее изложил в соответствующей теме.
Цитата
Физическое поле
- определение
Физическим полем называется пространственное распределение какой-либо физической величины отвечающее требованиям однозначности и непрерывности в каждой точке пространства и обращающееся в нуль на бесконечности.
Какие ещё остались возражения?


--------------------
Тот кто не знает и/или не понимает определений физических понятий - не знает физики.
То кто не знает физики - не знает и не понимает жизнь.
Природу изучать не формулы тачать.
Перейти в начало страницы
Вставить ник
+Цитировать сообщение
Зиновий
сообщение 5.5.2019, 14:11
Сообщение #7


Прапорщик
*******

Группа: Старожилы
Сообщений: 6999
Регистрация: 7.10.2017
Из: г. Москва
Пользователь №: 53225



Продолжение
Также хочу обратить ваше пристальное (!!!) внимание на следующую информацию:
Цитата
СПРАВОЧНИК по МАТЕМАТИКЕ для научных работников и инженеров
Г.Корн и Т.Корн
ИЗДАТЕЛЬСТВО "НАУКА"
ГЛАВНАЯ РЕДАКЦИЯ
ФИЗИКО-МАТЕМАТИЧЕСКОЙ ЛИТЕРАТУРЫ
Москва 1978
ГЛАВА 5
ВЕКТОРНЫЙ АНАЛИЗ
5.7 Отыскание векторного поля по его ротору и дивергенции
5.7-3 Отыскание векторного поля по его ротору и дивергенции


Сообщение отредактировал Зиновий - 5.5.2019, 15:45


--------------------
Тот кто не знает и/или не понимает определений физических понятий - не знает физики.
То кто не знает физики - не знает и не понимает жизнь.
Природу изучать не формулы тачать.
Перейти в начало страницы
Вставить ник
+Цитировать сообщение
vps137
сообщение 6.5.2019, 3:56
Сообщение #8


Прапорщик
*******

Группа: Старожилы
Сообщений: 6685
Регистрация: 12.8.2017
Пользователь №: 97485



Цитата(Зиновий @ 29.4.2019, 18:40) *
Докажем небольшую теорему.
Если ротор некоего векторного поля F по всему пространству поля включая его границы равен градиенту некоего поля ∂Ψ/∂t (т.е. равенство тождественное), то векторное поле F и поле градиента ∂Ψ/∂t оба равны нулю тождественно.

Доказательство
Дано:
rotF ≡ grad(∂Ψ/∂t); (4)
Подействуем оператором "rot" на выражение (4).
Получаем:
rotrotF ≡ rotgrad(∂Ψ/∂t).
Но ротор градиента есть тождественный ноль и след. ротор ротора вектора F тоже тождественный ноль, что означает тождественное отсутствие в пространстве векторного поля F возбудителей поля F и следовательно поле F тождественно равно нулю.
Аналогично подействуем оператором "div" на выражение (4).
Получаем:
divrotF ≡ divgrad(∂Ψ/∂t).
Но дивергенция ротора есть тождественный ноль, а след. и дивергенция градиента частной производной по времени есть тоже тождественный ноль.
Т.е. во всём пространстве поля градиент ∂Ψ/∂t нет источников поля градиента ∂Ψ/∂t и следовательно поле градиент ∂Ψ/∂t тождественно равно нулю.
Резюме
Из выражения (4), а следовательно и из выражения (3) вытекает тождественное равенство нулю магнитного поля якобы возбуждаемого, по утверждению Максвелла, токами смещения в переменном по времени электрическом поле плоского воздушного конденсатора.
Какие возражения будут у математиков?

Согласен с мнением Паралигона. Можно добавить также, что значения градиентов, дивергенций и роторов на границе ввиду разрывности функций следует определять через т.н. поверхностные градиенты, дивергенции и роторы. Т.е. необходимо знать форму границы, направление ее нормалей в каждой точке. Об этом можно подробнее посмотреть у тех же Корнов.


--------------------
Felix qui potuit rerum cognoscere causas. /Вергилий/
Апейроника - наука будущего?
Перейти в начало страницы
Вставить ник
+Цитировать сообщение
Зиновий
сообщение 6.5.2019, 11:35
Сообщение #9


Прапорщик
*******

Группа: Старожилы
Сообщений: 6999
Регистрация: 7.10.2017
Из: г. Москва
Пользователь №: 53225



Цитата(vps137 @ 6.5.2019, 3:56) *
Согласен с мнением Паралигона. Можно добавить также, что значения градиентов, дивергенций и роторов на границе ввиду разрывности функций следует определять через т.н. поверхностные градиенты, дивергенции и роторы. Т.е. необходимо знать форму границы, направление ее нормалей в каждой точке. Об этом можно подробнее посмотреть у тех же Корнов.
В этом Вы ошибаетесь.
Просто на границе поля источники (возбудители) поля "div" и "rot" становятся отличными от нуля.
Никакого разрыва полей φ и А и их производных на границе источников не происходит.
См. теорему Остроградского-Гаусса и теорему Стокса.


--------------------
Тот кто не знает и/или не понимает определений физических понятий - не знает физики.
То кто не знает физики - не знает и не понимает жизнь.
Природу изучать не формулы тачать.
Перейти в начало страницы
Вставить ник
+Цитировать сообщение
vps137
сообщение 6.5.2019, 13:55
Сообщение #10


Прапорщик
*******

Группа: Старожилы
Сообщений: 6685
Регистрация: 12.8.2017
Пользователь №: 97485



Цитата(Зиновий @ 6.5.2019, 13:35) *
В этом Вы ошибаетесь.
Просто на границе поля источники (возбудители) поля "div" и "rot" становятся отличными от нуля.
Никакого разрыва полей φ и А и их производных на границе источников не происходит.
См. теорему Остроградского-Гаусса и теорему Стокса.

Я говорил о вашей теореме. В ней при доказательстве вы использовали, что rot grad φ=0. Это выражение справедливо, если скалярное поле φ везде дифференцируемо в данной области. На границе это условие в общем случае на соблюдается, о чём и было моё замечание.

Сообщение отредактировал vps137 - 6.5.2019, 14:37


--------------------
Felix qui potuit rerum cognoscere causas. /Вергилий/
Апейроника - наука будущего?
Перейти в начало страницы
Вставить ник
+Цитировать сообщение
Зиновий
сообщение 6.5.2019, 15:50
Сообщение #11


Прапорщик
*******

Группа: Старожилы
Сообщений: 6999
Регистрация: 7.10.2017
Из: г. Москва
Пользователь №: 53225



Цитата(vps137 @ 6.5.2019, 13:55) *
Я говорил о вашей теореме. В ней при доказательстве вы использовали, что rot grad φ=0. Это выражение справедливо, если скалярное поле φ везде дифференцируемо в данной области. На границе это условие в общем случае на соблюдается, о чём и было моё замечание.
Зачем повторять зазубренную глупость, когда очевидно, что:
1. rotgrad ≡ 0 не зависимо от φ,
т.к. rotgrad ≡ [ × ] ≡ 0.
В чём Вы легко можете убедиться расписав эту операцию в любой системе координат, как с φ, так и без φ.
2. Обязательным условием накладываемым на функцию потенциалов является как минимум дважды дифференцируемость их.
Ни о каких скачках или разрывах потенциалов и их производных, на любой границе и речи быть не может.
Вот почему академики, читая Вам лекции по теории поля, не давали Вам доказательно выводить все математические положения, а заставляли зазубривать только то, что они считали нужным.

Сообщение отредактировал Зиновий - 6.5.2019, 15:54


--------------------
Тот кто не знает и/или не понимает определений физических понятий - не знает физики.
То кто не знает физики - не знает и не понимает жизнь.
Природу изучать не формулы тачать.
Перейти в начало страницы
Вставить ник
+Цитировать сообщение
vps137
сообщение 6.5.2019, 16:35
Сообщение #12


Прапорщик
*******

Группа: Старожилы
Сообщений: 6685
Регистрация: 12.8.2017
Пользователь №: 97485



Цитата(Зиновий @ 6.5.2019, 17:50) *
Зачем повторять зазубренную глупость, когда очевидно, что:
1. rotgrad ≡ 0 не зависимо от φ,
т.к. rotgrad ≡ [ × ] ≡ 0.
В чём Вы легко можете убедиться расписав эту операцию в любой системе координат, как с φ, так и без φ.
2. Обязательным условием накладываемым на функцию потенциалов является как минимум дважды дифференцируемость их.
Ни о каких скачках или разрывах потенциалов и их производных, на любой границе и речи быть не может.
Вот почему академики, читая Вам лекции по теории поля, не давали Вам доказательно выводить все математические положения, а заставляли зазубривать только то, что они считали нужным.

Не выдумывайте, никто меня не заставлял зазубривать - разве что по истмату.

Системы координат тут не при чём.
rot grad применяется к функции, а не к пустому месту. От поведения функции, от того, дифференцируема она или нет, это выражение зависит.


--------------------
Felix qui potuit rerum cognoscere causas. /Вергилий/
Апейроника - наука будущего?
Перейти в начало страницы
Вставить ник
+Цитировать сообщение
Зиновий
сообщение 6.5.2019, 17:35
Сообщение #13


Прапорщик
*******

Группа: Старожилы
Сообщений: 6999
Регистрация: 7.10.2017
Из: г. Москва
Пользователь №: 53225



Цитата(vps137 @ 6.5.2019, 16:35) *
Не выдумывайте, никто меня не заставлял зазубривать - разве что по истмату.

Системы координат тут не при чём.
rot grad применяется к функции, а не к пустому месту. От поведения функции, от того, дифференцируема она или нет, это выражение зависит.
Ранее я уже указывал Вам на то, что одно из обязательных требований к потенциалам является их как минимум дважды дифференцируемость.
(У Вас плохо с памятью?)
Вот и распишите для произвольной функции φ операцию "rotgradφ" и убедитесь в том, что rotgradφ ≡ 0 независимо от φ.
P.S.
Надеюсь вы понимаете разницу между тождеством "≡" и равенством "="?

Сообщение отредактировал Зиновий - 6.5.2019, 17:47


--------------------
Тот кто не знает и/или не понимает определений физических понятий - не знает физики.
То кто не знает физики - не знает и не понимает жизнь.
Природу изучать не формулы тачать.
Перейти в начало страницы
Вставить ник
+Цитировать сообщение
vps137
сообщение 6.5.2019, 18:45
Сообщение #14


Прапорщик
*******

Группа: Старожилы
Сообщений: 6685
Регистрация: 12.8.2017
Пользователь №: 97485



Цитата(Зиновий @ 6.5.2019, 19:35) *
Ранее я уже указывал Вам на то, что одно из обязательных требований к потенциалам является их как минимум дважды дифференцируемость.
(У Вас плохо с памятью?)
Вот и распишите для произвольной функции φ операцию "rotgradφ" и убедитесь в том, что rotgradφ ≡ 0 независимо от φ.
P.S.
Надеюсь вы понимаете разницу между тождеством "≡" и равенством "="?

Каверзный вопрос. С памятью все в порядке.
Я вам о том же и говорю - на границе функция может быть недифференцируемой из-за отсутствия непрерывности, что является необходимым условием дифференцируемости. Ведь на границе, как известно, разрыв у функций - обычное дело.

Но я ещё раз прочитал вашу теорему. В ней сказано, что градиент существует и на границе. Значит, функция, от которой берется градиент, всюду гладкая. Так что моё замечание можно не принимать во внимание. Как там с этой теоремой для многосвязных областей я не берусь комментировать.


--------------------
Felix qui potuit rerum cognoscere causas. /Вергилий/
Апейроника - наука будущего?
Перейти в начало страницы
Вставить ник
+Цитировать сообщение
Зиновий
сообщение 6.5.2019, 21:17
Сообщение #15


Прапорщик
*******

Группа: Старожилы
Сообщений: 6999
Регистрация: 7.10.2017
Из: г. Москва
Пользователь №: 53225



Цитата(vps137 @ 6.5.2019, 18:45) *
Каверзный вопрос. С памятью все в порядке.
Я вам о том же и говорю - на границе функция может быть недифференцируемой из-за отсутствия непрерывности, что является необходимым условием дифференцируемости. Ведь на границе, как известно, разрыв у функций - обычное дело.
Да, но не в случае потенциалов.

Цитата(vps137 @ 6.5.2019, 18:45) *
Но я ещё раз прочитал вашу теорему (теорему Г.Гельмгольца - комментарий Зиновия). В ней сказано, что градиент существует и на границе. Значит, функция, от которой берется градиент, всюду гладкая. Так что моё замечание можно не принимать во внимание. Как там с этой теоремой для многосвязных областей я не берусь комментировать.
Ну и на том спасибо.
Подождём, что ответит Paraligon...


--------------------
Тот кто не знает и/или не понимает определений физических понятий - не знает физики.
То кто не знает физики - не знает и не понимает жизнь.
Природу изучать не формулы тачать.
Перейти в начало страницы
Вставить ник
+Цитировать сообщение
vps137
сообщение 7.5.2019, 6:22
Сообщение #16


Прапорщик
*******

Группа: Старожилы
Сообщений: 6685
Регистрация: 12.8.2017
Пользователь №: 97485



Цитата(Зиновий @ 6.5.2019, 23:17) *
Ну и на том спасибо.
Подождём, что ответит Paraligon...

Теорема Гельмгольца всё-таки о другом.


--------------------
Felix qui potuit rerum cognoscere causas. /Вергилий/
Апейроника - наука будущего?
Перейти в начало страницы
Вставить ник
+Цитировать сообщение
Зиновий
сообщение 7.5.2019, 11:44
Сообщение #17


Прапорщик
*******

Группа: Старожилы
Сообщений: 6999
Регистрация: 7.10.2017
Из: г. Москва
Пользователь №: 53225



Цитата(vps137 @ 7.5.2019, 6:22) *
Теорема Гельмгольца всё-таки о другом.
Это конечно же теорема Гельмгольца "Определение векторного поля по дивергенции и ротору".
Я только использовал её частный случай при тождественном равенству нулю источников (возбудителей) поля по всему бесконечному пространству.


--------------------
Тот кто не знает и/или не понимает определений физических понятий - не знает физики.
То кто не знает физики - не знает и не понимает жизнь.
Природу изучать не формулы тачать.
Перейти в начало страницы
Вставить ник
+Цитировать сообщение
Зиновий
сообщение 15.5.2019, 9:42
Сообщение #18


Прапорщик
*******

Группа: Старожилы
Сообщений: 6999
Регистрация: 7.10.2017
Из: г. Москва
Пользователь №: 53225



Цитата(vps137 @ 6.5.2019, 18:45) *
.............................................................................
Но я ещё раз прочитал вашу теорему. В ней сказано, что градиент существует и на границе. Значит, функция, от которой берется градиент, всюду гладкая. Так что моё замечание можно не принимать во внимание. Как там с этой теоремой для многосвязных областей я не берусь комментировать.
Учитывая отсутствие каких-либо дополнительных краевых условий, которые могли бы нарушить условие односвязности поля плотности токов смещения плоского воздушного электрического конденсатора и молчание участника Паралигон приходим к выводу, что введённое Максвеллом утверждение о якобы возбуждении токами смещения в плоском воздушном электрическом конденсаторе магнитного поля ошибочно, а след. ошибочна и сама его гипотеза электромагнетизма.
Что и получило прямое экспериментальное подтверждение изложенное в теме "Закон полного тока не "Закон", а частный случай".

Сообщение отредактировал Зиновий - 15.5.2019, 9:46


--------------------
Тот кто не знает и/или не понимает определений физических понятий - не знает физики.
То кто не знает физики - не знает и не понимает жизнь.
Природу изучать не формулы тачать.
Перейти в начало страницы
Вставить ник
+Цитировать сообщение
Paraligon
сообщение 22.5.2019, 18:36
Сообщение #19


Прапорщик
*******

Группа: Старожилы
Сообщений: 7901
Регистрация: 14.8.2017
Пользователь №: 129274



С точки зрения математики, вся теория поля сводится к двум соотношениям в некоторой области:

v = du

dd = 0

В первом случае, поле u называется потенциалом (различают скалярные и векторные потенциалы) поля v в заданной области,
а задача существования потенциалов, действительно Зиновий прав, является основной задачей теории поля.

Используя второе равенство, которое читается граница границы равна нулю, мы сразу находим необходимое условие существования потенциала у поля. Достаточно подействовать оператором d на первое равенство:

dv = ddu = 0, т.е.

для заданного поля v необходимым условием существования потенциала u является равенство dv = 0

Спрашивается, когда это условие dv = 0 будет достаточным условием существования потенциала u, т.е. существования такого поля u, что v = du?

Математики выяснили, что ответ на последний вопрос существенно зависит от ТОПОЛОГИИ (ФОРМЫ) области в которой решается эта задача!

Математики называют оператор d граничным оператором (точнее кограничным, ну не будем делать для простоты различия).
Физики называют оператор d по-разному, то дивергенцией, то ротором, то градиентом.

Собственно говоря и всё! Чтобы двигаться дальше необходимо описать ТОПОЛОГИЮ области посредством различных инвариантов, например, модно говорить об односвязных областях, областях с дырками, областях с границами и т.п.
Дополнительно, могут возникнуть ограничения на классы рассматриваемых полей, как то, непрерывные, гладкие, кусочно-гладкие, бесконечно гладкие, аналитические, гармонические и т.п. Источники поля будут лежать на ГРАНИЦЕ области. Итак, кроме граничного ОПЕРАТОРА имеет место быть ещё ГРАНИЦА области. Между этими границами (чтобы их различать и используют приставку "ко") есть некоторая связь (двойственность), которую математики называют формулой Стокса, а физики формулой Гаусса (Стокса).

Перейти в начало страницы
Вставить ник
+Цитировать сообщение
vps137
сообщение 23.5.2019, 4:46
Сообщение #20


Прапорщик
*******

Группа: Старожилы
Сообщений: 6685
Регистрация: 12.8.2017
Пользователь №: 97485



Цитата(Paraligon @ 22.5.2019, 20:36) *
С точки зрения математики, вся теория поля сводится к двум соотношениям в некоторой области:

v = du

dd = 0

В первом случае, поле u называется потенциалом (различают скалярные и векторные потенциалы) поля v в заданной области,
а задача существования потенциалов, действительно Зиновий прав, является основной задачей теории поля.

Используя второе равенство, которое читается граница границы равна нулю, мы сразу находим необходимое условие существования потенциала у поля. Достаточно подействовать оператором d на первое равенство:

dv = ddu = 0, т.е.

для заданного поля v необходимым условием существования потенциала u является равенство dv = 0

Спрашивается, когда это условие dv = 0 будет достаточным условием существования потенциала u, т.е. существования такого поля u, что v = du?

Математики выяснили, что ответ на последний вопрос существенно зависит от ТОПОЛОГИИ (ФОРМЫ) области в которой решается эта задача!

Математики называют оператор d граничным оператором (точнее кограничным, ну не будем делать для простоты различия).
Физики называют оператор d по-разному, то дивергенцией, то ротором, то градиентом.

Собственно говоря и всё! Чтобы двигаться дальше необходимо описать ТОПОЛОГИЮ области посредством различных инвариантов, например, модно говорить об односвязных областях, областях с дырками, областях с границами и т.п.
Дополнительно, могут возникнуть ограничения на классы рассматриваемых полей, как то, непрерывные, гладкие, кусочно-гладкие, бесконечно гладкие, аналитические, гармонические и т.п. Источники поля будут лежать на ГРАНИЦЕ области. Итак, кроме граничного ОПЕРАТОРА имеет место быть ещё ГРАНИЦА области. Между этими границами (чтобы их различать и используют приставку "ко") есть некоторая связь (двойственность), которую математики называют формулой Стокса, а физики формулой Гаусса (Стокса).

В этой связи интересно то, что на границе могут быть гладкие поля только для одномерных сфер (для окружности), для трехмерных (т.е. для 4D!) и для семимерных. Это если верить Википедии. Но, наверное, для всех нечетных сфер?


--------------------
Felix qui potuit rerum cognoscere causas. /Вергилий/
Апейроника - наука будущего?
Перейти в начало страницы
Вставить ник
+Цитировать сообщение

2 страниц V   1 2 >
Ответить в данную темуНачать новую тему
1 чел. читают эту тему (гостей: 1, скрытых пользователей: 0)
Пользователей: 0

 



Текстовая версия Сейчас: 21.10.2019, 0:19
Консультации адвоката по уголовным делам. Бесплатно. По всей России