Цитата
а новые результаты, да почти вся математика XX века может быть отсюда выведена ... конкретно, вот например, существование равновесия по Нэшу для двух и более лиц в теории игр
Говорите, доказал?
Цитата
набор стратегий в игре для двух и более игроков, в котором ни один участник не может увеличить выигрыш, изменив свою стратегию, если другие участники своих стратегий не меняют
Равновесие НэшаВот и посмотрим, насколько это соответствует реальности в экономике
Взяли случай Генри Форда. Он принципиально изменил стратегию, сделав ставку на высокие зарплаты и механизацию. Никто из "игроков" до него не платил столько и так не организовывал труд рабочих. Что ему только ни делали: и по судам таскали, и в антисемиты записывали, и фабрики жгли. Сейчас массовое производство, пооперационный расчёт труда являются базой мирового производства. Никто не хотел, но все пошли именно в русле начинаний Форда, а он смог преодолеть сопротивление.
Взяли пример из игр. В играх заранее заложена определённая стратегия. Если ты её придерживаешься, как минимум, не проигрываешь, а выигрываешь тогда, когда знаешь наперёд эту стратегию и в определённые моменты отходишь от неё, когда программа или другой игрок пытаются тебя подставить на стандарте, имеющем второе решение, которое программа/игрок не учитывают вследствие своей ограниченности/заданности. Этим ты нарушаешь баланс и только от тебя зависит насколько правильно ты просчитал встречную сторону. "Кто не рискует, тот не пьёт шампанского"...
"Прошиб меня холодный пот
До косточки,
И я прошелся чуть вперед
По досточке.
Гляжу - размыли край ручьи
Весенние,
Там выезд есть из колеи -
Спасение!
Я грязью из-под шин плюю
В чужую эту колею.
Эй, вы, задние! Делай, как я.
Это значит - не надо за мной.
Колея эта - только моя!
Выбирайтесь своей колеей.
(В. Высоцкий Чужая колея)
Так что, как известно, Нобеля дают не за успехи и знания, а за принадлежность к определённому клану. Нарушение баланса вопреки желанию других игроков - это основа победы в игре. И если победы реальность, то равновесие Нэша туфта.
А о Чандрасекаре вообще говорить нечего. Если он своим умом не допёр до элементарных ошибок в ОТО, его из школы выпускать не стоило, не то что нобелевские давать. Обычная безмозглая тасовка заданными корявыми кубиками. И то, что Нобелевский комитет этого не увидел, ещё раз говорит о его "уровне". К природе это не относится. Обычные игры чистого разума...